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a b s t r a c t

This paper discusses a computationally efficient approach to set-point optimisation which cooperates
with predictive control and its application to a multivariable neutralisation reactor. In the presented
system structure a neural Hammerstein model of the process is used. For set-point optimisation, a lin-
earisation of the steady-state model derived from the neural Hammerstein model is calculated on-line. As
a result, the set-point is determined from a linear programming problem. For predictive control, a linear
approximation of the neural Hammerstein model is calculated on-line and the control policy is deter-
mined from a quadratic programming problem. Thanks to linearisation, the necessity of on-line nonlinear
optimisation is eliminated. This article emphasises advantages of neural Hammerstein models: accuracy,
eutralisation reactors

eural networks
ammerstein models
inearisation

a limited number of parameters and a simple structure. Thanks to using such models, model transforma-
tions can be carried out very efficiently on-line. It is demonstrated that results obtained in the presented
structure are very close to those achieved in a computationally demanding structure with on-line non-
linear optimisation. It is also shown that for the considered neutralisation reactor the classical system
structure in which for control and set-point optimisation linear models are used gives numerically wrong

results.

. Introduction

In advanced process control the multilayer (hierarchical) con-
rol system structure is typically used [11,49,50]. It is comprised of
hree layers: the basic (direct) control layer which is responsible
or safe operation of the process, the supervisory control layer (the
dvanced control layer) and the set-point optimisation layer which
alculates on-line economically optimal set-point. Classical single-
oop PID controllers are usually used for basic control whereas

odel predictive control (MPC) algorithms [35,46,50] are usually
sed for supervisory control. In MPC an explicit dynamic model of
he process is used to predict on-line its future behaviour over some

ime horizon and to optimise the future control policy. A unique
dvantage of MPC algorithms is the fact that they can take into
ccount constraints imposed on both process inputs (manipulated
ariables) and outputs (controlled variables). Constraints satisfac-

Abbreviations: ASSTO, adaptive steady-state target optimisation; LSSO, local
teady-state optimisation; MIMO, multiple-input multiple-output; MPC, model pre-
ictive control; MPC-NO, model predictive control with nonlinear optimisation;
PC-NPL, model predictive control with nonlinear prediction and linearisation;
SE, mean squared error; ss, steady-state; SSTO, steady-state target optimisation.
∗ Tel.: +48 22 234 76 73; fax: +48 22 825 37 19.
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tion is very important in practice because they usually determine
quality, economic efficiency and safety. Moreover, MPC techniques
are very efficient when applied to multivariable processes with
many manipulated and many controlled variables (multiple-input
multiple-output (MIMO) processes). The majority of chemical pro-
cesses (reactors, distillation columns, etc.) are multivariable by
nature, existing cross-couplings are strong and cannot be neglected
in control.

Cooperation of set-point optimisation and MPC algorithms is an
important field of research and it has great practical significance
[4,5,9,44,49,50]. Although it is possible to integrate set-point opti-
misation and MPC into one optimisation problem [14,50,53], the
multilayer control system structure is usually implemented. It is
assumed that disturbances are slowly-varying (when compared to
the dynamics of the process). Thanks to such an assumption, the
nonlinear set-point optimisation problem can be solved reasonably
less frequently than the MPC controller executes. Provided that the
dynamics of disturbances is much slower than the dynamics of the
plant, this approach gives satisfactory results. Very often distur-
bances (flow rates, properties of feed and energy streams, etc.) vary

significantly and not much slower than the dynamics of the process.
In such cases operation in the classical structure with frequency of
set-point optimisation much lower than that of MPC may result in a
significant loss of economic effectiveness [49,50]. Ideally, nonlinear
set-point optimisation should be repeated on-line as often as MPC

dx.doi.org/10.1016/j.cej.2010.07.065
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
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s activated. Because of high computational complexity, it is usu-
lly not possible. Moreover, nonlinear optimisation may terminate
n local minima. Hence, nonlinear set-point optimisation is rarely
sed on-line.

To reduce the computational complexity of nonlinear set-point
ptimisation in the simplest case a constant linear steady-state
odel derived from the dynamic model used in MPC can be

sed [21,30,44,49,50]. It leads to the steady-state target optimi-
ation (SSTO) structure in which set-points are calculated from
n easy to solve linear programming problem. It can be solved
n-line as frequently as MPC is activated. Unfortunately, in case
f nonlinear processes such an approach can give economically
nd numerically wrong operating points. To solve this problem it
s possible to estimate and take into account uncertainty in the
teady-state gain in the framework of a robust steady-state target
alculation [21]. Alternatively, in the adaptive steady-state tar-
et optimisation (ASSTO) structure the comprehensive nonlinear
teady-state model is linearised on-line and set-point optimisation
eeds solving a linear programming task [30,44,49,50]. Piecewise-

inear steady-state target optimisation [32] or a trained off-line
eural network which approximates the solution to the set-point
ptimisation problem [27] can be also used.

In the multilayer control system structure for set-point opti-
isation a steady-state model of the process is used, for MPC a

ynamic model is used. Both models are used on-line. In gen-
ral, main measures of model utility are: approximation accuracy,
uitability for on-line application, easiness of development and
hysical interpretation [43]. Fundamental (first-principle) models
26,37], although potentially very precise, are usually not suit-
ble for on-line set-point optimisation and control. Fundamental
ynamic models are comprised of systems of nonlinear differen-
ial and algebraic equations which have to be solved on-line in

PC. Fundamental steady-state models consist of systems of non-
inear algebraic equations which also have to be solved on-line.
n-line solution of nonlinear equations, although possible, may
e computationally demanding as some fundamental models are
ery complex and may lead to numerical problems (e.g. stiffness,
ll-conditioning) [31]. Because neural networks [17,45] can be effi-
iently used for modelling of numerous technological processes,
hey can be also used for set-point optimisation and in MPC algo-
ithms. In contrast to solutions based on fundamental models, the
ecessity of solving on-line differential and algebraic equations is
liminated. MPC algorithms based on neural models have been
xtensively researched recently, e.g. [1,2,13,33,38,39,50,52].

Classical neural models are entirely black-box models which
eans that the model structure has nothing to do with the phys-

cal nature of the process and model parameters (weights) have
o physical interpretation. A sound alternative is to use a neu-
al Hammerstein model which is composed of a nonlinear neural
teady-state (static) part in series with a linear dynamic part
20]. Although Hammerstein models are usually obtained without
nderstanding the technological nature of the process, unlike typ-

cal black-box models (e.g. neural ones), such models have a clear
hysical interpretation because their steady-state characteristics
an be determined relatively easily. Hammerstein models can be
fficiently used for modelling of various chemical processes: e.g.
istillation columns [10,12,23], heat exchangers [10], neutralisa-
ion reactors [12,22,28,42]. An excellent review of identification
lgorithms and applications of Hammerstein models in process
odelling, control and fault diagnosis is given in [20]. In particular,
ammerstein models can be used for prediction in MPC algorithms,

.g. [6,12,16,28,42].

This paper details a computationally efficient ASSTO approach
o set-point optimisation which cooperates with predictive control
nd its application to a multivariable neutralisation reactor. Unlike
olutions discussed in the literature (in which two models are used,
g Journal 166 (2011) 269–287

i.e. a steady-state one and a dynamic one), in the presented system
structure only one neural Hammerstein model of the process is
used. For set-point optimisation, a linearisation of the steady-state
model derived from the neural Hammerstein model is calculated
on-line. As a result, the set-point is determined from a linear pro-
gramming problem. For predictive control, a linear approximation
of the neural Hammerstein model is calculated on-line and the con-
trol policy is determined from a quadratic programming problem.
Thanks to linearisation, the necessity of on-line nonlinear optimi-
sation is eliminated. It is demonstrated that results obtained in the
presented structure are very close to those achieved in a computa-
tionally demanding structure with on-line nonlinear optimisation.
It is also shown that for the considered neutralisation reactor the
classical system structure in which for control and set-point optimi-
sation linear models are used gives numerically wrong results. The
general idea of using Hammerstein models for set-point optimisa-
tion which cooperates with MPC was first described in a conference
paper [29], but only polynomial structures were considered and
details not given.

This paper is organised as follows. Section 2 describes the
classical multilayer system structure, set-point and MPC optimi-
sation problems are given. Section 3 presents the computationally
efficient structure with the ASSTO layer and an efficient MPC algo-
rithm in which the neural Hammerstein model is used. The model
structure is described. On-line derivation of a steady-state model
from the dynamic model is given, the ASSTO optimisation prob-
lem based on a linearised steady-state model is described. On-line
calculations necessary in MPC (linearisation of the dynamic neural
Hammerstein model, etc.) are discussed, MPC quadratic optimisa-
tion problem is given. Section 4 presents development of models
of the neutralisation reactor. Linear, polynomial Hammerstein and
neural Hammerstein models are compared in terms of accuracy
and complexity. Efficiency of the discussed approach to on-line
set-point optimisation cooperating with MPC is shown. Section 5
concludes the paper.

2. The classical multilayer control structure

The considered process has nu inputs, ne measured or estimated
disturbances (uncontrolled inputs) and ny outputs. In this paper
two notation methods are used: vectors and scalars. For compact-
ness of presentation vectors u = [ u1 . . . unu ]T, e = [ e1 . . . ene ]T,

y = [ y1 . . . yny ]T are used. When it is necessary or convenient, ele-
ments of these vectors are used, i.e. scalars uj, where j = 1, . . ., nu,
ej, where j = 1, . . ., ne and yj, where j = 1, . . ., ny.

2.1. Set-point optimisation

The standard multilayer system structure is depicted in
Fig. 1[11,49,50]. The basic control layer is responsible for safe oper-
ation of the process. Unlike other layers, this layer has direct access
to input variables of the process. PID controllers or simplified MPC
algorithms (i.e. based on linear models) are used in this layer. The
second layer—the supervisory control layer (or the advanced con-
trol layer) calculates on-line set-points for the basic control layer.
Frequently, determined set-points must satisfy predefined con-
straints. Hence, this layer can be also named the constraint control
layer [49]. Because of the necessity of constraint satisfaction and
considering the fact that the majority of processes are multivari-
able, with strong cross-coupling, the MPC technique is a natural

choice for the supervisory control layer. The third layer—the local
steady-state optimisation (LSSO) layer, calculates on-line econom-
ically optimal set-points for the supervisory control layer in such a
way that the production profit is maximised and constraints are sat-
isfied. In the case of complex plants, plant-wide optimisation can be
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Fig. 1. The classical multilayer control system structure.

lso used to determine optimal operating conditions for each unit of
he plant [47]. Each layer has a different frequency of intervention,
he basic feedback control layer is the fastest.

In this paper cooperation of economic set-point optimisation
the LSSO layer) and MPC algorithms (the supervisory control layer)
s considered. Because the objective of set-point optimisation is to

aximise the production profit and to satisfy constraints, which
etermine safety and quality of production, the LSSO layer usually
olves on-line the following optimisation problem [49,50]:

min
uss

{
JE = cT

uuss − cT
yyss

}
subject to
umin ≤ uss ≤ umax

ymin ≤ yss ≤ ymax

yss = f ss(uss, ess)

(1)

here vectors cu = [ cu,1 . . . cu,nu ]T, cy = [ cy,1 . . . cy,ny ]T represent
conomic prices, constraints imposed on input and output variables
re defined by vectors:

min =
[

umin
1 . . . umin

nu

]T
, ymin =

[
ymin

1 . . . ymin
ny

]T
(2)

max =
[

umax
1 . . . umax

nu

]T
, ymax =

[
ymax

1 . . . ymax
ny

]T
(3)

he superscript ‘ss’ refers to the steady-state.
For set-point optimisation a steady-state model f ss : Rnu+ne →

ny of the process is used. Usually, the steady-state model is nonlin-
ar, which means that the LSSO task (1) is a nonlinear optimisation
roblem. Having obtained the solution to the LSSO problem, uss

lsso,
he steady-state model yss = fss(uss, ess) is next used to calculate the
ptimal set-point yss

lsso for the supervisory control layer.

.2. Model predictive control optimisation

In MPC algorithms [35,46,50] at each sampling instant k
algorithm iteration), k = 1, 2, . . ., future control increments are
alculated:

u(k) =

⎡
⎣ �u(k|k)

...

⎤
⎦ ∈RnuNu (4)
�u(k + Nu − 1|k)

t is assumed that �u(k + p | k) = 0 for p ≥ Nu, where Nu is the control
orizon. The objective of MPC is to minimise differences between
he economically optimal set-point yss

lsso(k) calculated by the LSSO
g Journal 166 (2011) 269–287 271

layer and predicted output values ŷ(k + p|k) ∈Rny over the pre-
diction horizon N ≥ Nu, i.e. for p = 1, . . ., N. The MPC optimisation
problem is

min
�u(k)

{
JMPC(k) =

N∑
p=1

∣∣yss
lsso(k) − ŷ(k + p|k)

∣∣2

Mp

+
Nu−1∑
p=0

∣∣�u(k + p|k)
∣∣2

�p

}
subject to
umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1
−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1
ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

(5)

where Mp ≥ 0 and �p > 0 are matrices of dimensionality ny × ny

and nu × nu, respectively. The second part of the cost func-
tion penalises excessive control increments. Only the first nu

elements of the determined sequence (4) are applied to the
process (i.e. control moves for the current sampling instant k),
u(k) = � u(k | k) + u(k − 1). At the next sampling instant, k + 1, out-
put measurements are updated, the prediction is shifted one step
forward and the whole procedure is repeated. For prediction, i.e. to
calculate ŷ(k + 1 | k), ŷ(k + 2 | k), . . ., ŷ(k + N | k), a dynamic model of
the process is used.

In the MPC optimisation problem (5) magnitude constraints
(determined by vectors umin, umax ∈Rnu and ymin, ymax ∈Rny ) are
usually the same as in the LSSO task (1). Additionally, constraints
can be imposed on increments of input variables, �umax ∈Rnu .

The described MPC optimisation problem (5) can be used if the
number of inputs is the same as the number of outputs (i.e. nu = ny).
When nu > ny the solution to this problem may be not unique. That
is why it is necessary to supplement the cost function JMPC(k) with

a penalty term
∑Nu−1

p=0 �p

∣∣u(k + p|k) − uss
lsso(k)

∣∣2
or impose an addi-

tional constraint u(k + Nu − 1|k) = uss
lsso(k) [49].

All things considered, in the standard multilayer control struc-
ture depicted in Fig. 1 two optimisation problems have to be solved
on-line: the nonlinear economic set-point optimisation problem
(1) and the MPC problem (5). When nonlinearity of the process is
not significant or when the region of operation is small, MPC algo-
rithms can use linear models of the process. In such a way the MPC
optimisation task is in fact an easy to solve quadratic program-
ming problem. Ideally, for set-point optimisation a comprehensive
nonlinear steady-state model should be used. As a result, a non-
linear set-point optimisation problem must be solved. Because of
high computational complexity it may be impossible to repeat set-
point optimisation frequently. The classical multilayer structure
with low frequency of economic optimisation can be economically
inefficient when disturbances (e.g. flow rates, properties of feed and
energy streams) vary significantly and fast [49]. Set-point optimi-
sation based on a steady-state linear model derived from the linear
dynamic model used for MPC is possible. In such a case one obtains a
linear programming problem (the steady-state target optimisation
(SSTO) structure [21,44,49]). Unfortunately, as it is demonstrated
in this paper, when set-point optimisation and MPC layers use lin-
ear models, for really nonlinear processes (e.g. the neutralisation
reactor) such an approach is insufficient.

3. The multilayer structure with adaptive steady-state
target optimisation and efficient MPC based on neural
Hammerstein models
Because a constant linear steady-state model used for set-point
optimisation is unlikely to describe properties of the nonlinear
process well enough, a straightforward idea is to update the
model on-line. Such an approach leads to the multilayer structure



272 M. Ławryńczuk / Chemical Engineerin

F
o

w
i
l
o
s
p
T
t
t
e
p
p

e
l
o
i
s
o
o
H

ig. 2. The multilayer control system structure with adaptive steady-state target
ptimisation (ASSTO) and MPC.

ith adaptive steady-state target optimisation (ASSTO) cooperat-
ng with MPC [30,44,49,50] shown in Fig. 2. It consists of the LSSO
ayer, the ASSTO layer and the MPC layer. Nonlinear LSSO set-point
ptimisation, in which the nonlinear optimisation problem (1) is
olved, is activated infrequently (for verification). At each sam-
ling instant ASSTO and MPC optimisation problems are solved.
he ASSTO layer uses a calculated on-line linear approximation of
he nonlinear steady-state model used in the LSSO layer. Thanks
o linearisation, the ASSTO set-point optimisation problem is a lin-
ar programming task. Usually, a constant linear model is used for
rediction in MPC. As a result, MPC optimisation (5) is a quadratic
rogramming task.

All things considered, the rudimentary ASSTO structure coop-
rating with MPC uses a nonlinear steady-state model in the LSSO
ayer (activated infrequently), its linear approximation (updated
n-line) in the ASSTO layer and a constant linear dynamic model

n MPC. It means that two separate models are used (i.e. a steady-
tate one and a dynamic one). Naturally, steady-state properties
f the linear dynamic model usually do not correspond with those
f the nonlinear steady-state model. In this paper only one neural
ammerstein model of the process is used. The same model is used

Fig. 3. The MIMO neural H
g Journal 166 (2011) 269–287

for both set-point optimisation and MPC. From the full dynamic
neural Hammerstein model the nonlinear steady-state model is
determined. It is used in the LSSO layer activated infrequently. This
steady-state model is linearised on-line for the current operating
point and the obtained linear approximation is used in the ASSTO
layer. The dynamic neural Hammerstein model is also linearised
on-line, this linearisation is next used in MPC. Analogously as in the
classical ASSTO+MPC structure, the MPC layer solves a quadratic
programming problem, but the model used for prediction is not
constant but time-varying. Thanks to the specific structure of the
neural Hammerstein model, linear approximations of steady-state
and dynamic models can be obtained on-line very efficiently.

3.1. Neural Hammerstein models

The general structure of the considered neural Hammerstein
model is depicted in Fig. 3. It is composed of a nonlinear steady-state
part connected in series with a linear dynamic part. For the process
with nu inputs, ne disturbances and ny outputs, the steady-state
nonlinear part can be described in a compact way as

x(k) = g(u(k), e(k)) (6)

where g : Rnu+ne → R
nx is a nonlinear function, the linear dynamic

part is described by a difference equation:

A(q−1)y(k) = B(q−1)x(k) (7)

Auxiliary signals (i.e. outputs of the steady-state part) are denoted
by x(k) ∈Rnx , q−1 is a backward shift operator. From (6) and (7):

A(q−1)y(k) = B(q−1)g(u(k), e(k)) (8)

Two types of neural Hammerstein models of multivariable
processes are thoroughly discussed in [28]. In the first case the
nonlinear steady-state part of the model is realised by only one
neural network, in the second case as many as nx neural networks
are used. It is shown that for the neutralisation process the second
structure makes it possible to obtain models of good accuracy and
significantly smaller number of parameters than the first structure.
Hence, in this paper only such models are considered. Multivariable
Hammerstein models discussed elsewhere, e.g. in [20,28], do not
take into account disturbance signals explicitly, which are essential

for set-point optimisation.

The nonlinear steady-state part of the model is realised by nx

multilayer perceptron (MLP) feedforward neural networks [17,45].
Each network has nu + ne inputs, one hidden layer and a linear
output. The structure of neural networks is depicted in Fig. 4. Con-

ammerstein model.
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ig. 4. Neural networks used in the steady-state part of the neural Hammerstein
odel (r = 1, . . ., nx).

ecutive outputs of neural networks are

r(k) = w2,r
0 +

Kr∑
i=1

w2,r
i

ϕ(zr
i (k)) (9)

here sums of inputs of the ith hidden node are

r
i (k) = w1,r

i,0 +
nu∑
j=1

w1,r
i,j

uj(k) +
ne∑
j=1

w1,r
i,nu+j

ej(k) (10)

nd Kr is the number of hidden nodes of the rth network (r = 1, . . .,
x). Weights of networks are denoted by w1,r

i,j
, i = 1, . . ., Kr, j = 0, . . .,

u + ne, r = 1, . . ., nx and w2,r
i

, i = 0, . . ., Kr, r = 1, . . ., nx, for the first
nd the second layer, respectively. From (9) and (10) outputs of the
teady-state part of the model are

r(k) = w2,r
0 +

Kr∑
i=1

w2,r
i

ϕ

⎛
⎝w1,r

i,0 +
nu∑
j=1

w1,r
i,j

uj(k) +
ne∑
j=1

w1,r
i,nu+j

ej(k)

⎞
⎠

(11)

he dynamic linear part (7) of the model is defined by the following
olynomial matrices:

(q−1) =

⎡
⎣ A1,1(q−1) . . . 0

...
. . .

...
0 . . . Any,ny (q−1)

⎤
⎦ (12)

nd

(q−1) =

⎡
⎣ B1,1(q−1) . . . B1,nx (q−1)

...
. . .

...
Bny,1(q−1) . . . Bny,nx (q−1)

⎤
⎦ (13)

ntries of matrices A(q−1), B(q−1) are polynomials in the backward
hift operator q−1:

i,i(q
−1) = 1 + ai

1q−1 + . . . + ai
nA

q−nA (14)

or i = 1, . . ., ny and

i,j(q
−1) = bi,j

1 q−1 + . . . + bi,j
nB

q−nB (15)

or i = 1, . . ., ny, j = 1, . . ., nx.
From (7), (12)–(15) the mth output of the Hammerstein model
m = 1, . . ., ny) is

m(k) =
nx∑

r=1

nB∑
l=1

bm,r
l

xr(k − l) −
nA∑
l=1

am
l ym(k − l) (16)
g Journal 166 (2011) 269–287 273

Because the dynamic Hammerstein model is used for prediction in
MPC, it is necessary to express outputs of the model at the current
sampling instant k as functions of inputs, disturbances and outputs
at previous sampling instants:

ym(k) = fm(u1(k − 1), . . . , u1(k − nB), . . . , unu (k − 1), . . . ,

unu (k − nB), e1(k−1), . . . , e1(k − nB), . . . , ene (k − 1), . . . ,

ene (k − nB), ym(k − 1), . . . , ym(k − nA)) (17)

where functions fm : RnA+(nu+ne)nB → R, m = 1, . . ., ny describe
behaviour of the process. Using (11) and (16), one obtains:

ym(k) =
nx∑

r=1

nB∑
l=1

bm,r
l

·

⎡
⎣w2,r

0 +
Kr∑
i=1

w2,r
i

ϕ

⎛
⎝w1,r

i,0 +
nu∑
j=1

w1,r
i,j

uj(k − l)

+
ne∑
j=1

w1,r
i,nu+j

ej(k − l)

⎞
⎠

⎤
⎦ −

nA∑
l=1

am
l ym(k − l) (18)

3.2. Set-point optimisation based on neural Hammerstein models

The steady-state nonlinear model can be derived from the
dynamic neural Hammerstein model. Using (6) and (7) and setting
q−1 = 1 one has

A(1)yss = B(1)xss = B(1)g(uss, ess) (19)

The steady-state model can be expressed as

yss = f ss(uss, ess) = Cg(uss, ess) (20)

where C = A−1(1)B(1) is a matrix of dimensionality ny × nx which is
independent of the current operating point, it is calculated off-line.
One has

yss =

⎡
⎢⎣ yss

1
...

yss
ny

⎤
⎥⎦ =

⎡
⎣ c1,1 . . . c1,nx

...
. . .

...
cny,1 . . . cny,nx

⎤
⎦

⎡
⎣ x1(uss, ess)

...
xnx (uss, ess)

⎤
⎦ (21)

Taking into account the structure of the steady-state neural part
of the Hammerstein model given by (11), consecutive outputs yss

m
(m = 1, . . ., ny) can be expressed as functions of inputs and distur-
bances:

yss
m = f ss

m (uss, ess) =
nx∑

r=1

cm,rxr(uss, ess)

=
nx∑

r=1

cm,r

⎡
⎣w2,r

0 +
Kr∑
i=1

w2,r
i

ϕ

⎛
⎝w1,r

i,0 +
nu∑
j=1

w1,r
i,j

uss
j

+
ne∑
j=1

w1,r
i,nu+j

ess
j

⎞
⎠

⎤
⎦ (22)

In order to emphasise the fact that the steady-state model can
be derived from the neural Hammerstein model in a straightfor-
ward way, a classical dynamic black-box model—a neural model

is considered. For simplicity of presentation first order dynamics
is assumed, the process has one input, one disturbance and one
output. The output signal for the current sampling instant k is

y(k) = g(u(k − 1), e(k − 1), y(k − 1)) (23)
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he function g : R3 → R
1 is a nonlinear mapping realised by the

eural network. In the steady-state one has

ss = g(uss, ess, yss) (24)

he steady-state output yss is an argument of the function g. Hence,
n order to find the steady-state model yss = fss(uss, ess) it would be
ecessary to solve on-line the nonlinear equation yss = g(uss, ess, yss).
n the contrary, the steady-state model yss = fss(uss, ess) is derived
irectly from the neural Hammerstein model without the necessity
f solving any equations.

The nonlinear model (22) is used for nonlinear set-point optimi-
ation in the LSSO layer. Moreover, this model is linearised on-line
round the current operating point of the process and next used
or set-point optimisation in the ASSTO layer. The operating point
s determined by most recent measurements of manipulated and
isturbance variables, i.e. by u(k − 1) and h(k), respectively. The
unction fss(uss, ess) depends on both inputs uss and disturbances ess

ut it is necessary to recall the fact that from the set-point optimisa-
ion problem (1) input values are obtained. Hence, it is obvious that
he steady-state model must be linearised with respect to inputs,
isturbances are parameters of the model (fixed at the current sam-
ling instant k), they are not arguments of the linearised model. The

inear approximation of the nonlinear steady-state model is

ss = f ss(uss, ess)
∣∣
uss=u(k−1),ess=e(k)

+ H(k)(uss − u(k − 1)) (25)

here the matrix:

H(k) = df ss(uss, ess)
duss

∣∣∣
uss=u(k−1),ess=e(k)

(26)

f dimensionality ny × nu consists of partial derivatives of the non-
inear function fss(uss, hss):

(k) =

⎡
⎢⎢⎢⎢⎣

∂f ss
1 (u(k − 1), e(k))

∂u1(k − 1)
. . .

∂f ss
1 (u(k − 1), e(k))

∂unu (k − 1)
...

. . .
...

∂f ss
ny (u(k − 1), e(k))

∂u1(k − 1)
. . .

∂f ss
ny (u(k − 1), e(k))

∂unu (k − 1)

⎤
⎥⎥⎥⎥⎦ (27)

aking into account the nonlinear steady-state model (22) derived
rom the neural Hammerstein model, entries of the matrix H(k) are

∂f ss
m (u(k − 1), e(k))

∂un(k − 1)
=

nx∑
r=1

cm,r

[
w2,r

0 +
Kr∑
i=1

w2,r
i

dϕ(zr
i
(k))

dzr
i
(k)

w1,r
i,n

]
(28)

here m = 1, . . ., ny, n = 1, . . ., nu and

r
i (k) = w1,r

i,0 +
nu∑
j=1

w1,r
i,j

uj(k − 1) +
ne∑
j=1

w1,r
i,nu+j

ej(k) (29)

f hyperbolic tangent is used as the nonlinear transfer function ϕ in
he hidden layer of steady-state part of the model:

dϕ(zr
i
(k))

dzr
i
(k)

= 1 − tanh2(zr
i (k)) (30)

hanks to linearisation, from the nonlinear set-point optimisation
LSSO) problem (1), one obtains the equivalent linear programming
SSTO problem:

min
ss

{
JE = cT

uuss − cT
yyss

}

u

subject to
umin ≤ uss ≤ umax

ymin ≤ yss ≤ ymax

yss = f ss(uss, ess)
∣∣
uss=u(k−1),ess=e(k)

+ H(k)(uss − u(k − 1))

(31)
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Let the solution to the ASSTO problem for the current sampling
instant be uss

assto(k). The linearised steady-state model (25) is next
used to calculate the optimal set-point yss

assto(k).
Because the nonlinear steady-state model is linearised on-line,

entries of the matrix H(k) depend on the current operating point.
Hence, the ASSTO layer is adaptive in contrast to the classical SSTO
approach which is based on a constant linear model derived from
the dynamic one used in MPC. The linearised steady-state model
used in ASSTO is consistent with the nonlinear model used in LSSO.

3.3. Efficient nonlinear MPC-NPL algorithm based on neural
Hammerstein models

Predictions ŷ(k + p|k) ∈Rny , for p = 1, . . ., N, which are used in
the MPC optimisation problem (5), are calculated using a dynamic
model of the process. The general prediction equation is

ŷ(k + p|k) = y(k + p|k) + d(k) (32)

where quantities y(k + p|k) ∈Rny are calculated from the model.
Unmeasured disturbances d(k) ∈Rny are estimated from

d(k) = y(k) − y(k|k − 1) (33)

where y(k) are measured while y(k | k − 1) are calculated from the
model.

If for prediction a nonlinear neural Hammerstein model is used
directly, predictions are nonlinear functions of the optimised future
control sequence (4). As a result, the MPC optimisation problem is
a nonlinear task which has to be solved on-line at each sampling
instant. Unfortunately, the computational burden of nonlinear MPC
is usually enormous and nonlinear optimisation may terminate in
local minima. As an alternative, the MPC scheme with nonlinear
prediction and linearisation (MPC-NPL) [33] is used here. The neu-
ral Hammerstein model is linearised on-line around the current
operating point. The obtained linearisation is used for prediction.
Thanks to it, the MPC optimisation task becomes a quadratic pro-
gramming problem, the necessity of on-line nonlinear optimisation
is eliminated.

The MPC algorithm considered here is an extension of the algo-
rithm described in [28] because disturbances e are taken into
account.

3.3.1. MPC quadratic programming problem
The linear approximation of the nonlinear dynamic neural Ham-

merstein model, obtained at the sampling instant k, is

A(q−1)y(k) = B̃(k, q−1)u(k) (34)

where

B̃(k, q−1) =

⎡
⎣ B̃1,1(k, q−1) . . . B̃1,nu (k, q−1)

...
. . .

...
B̃ny,1(k, q−1) . . . B̃ny,nu (k, q−1)

⎤
⎦ (35)

and

B̃i,j(k, q−1) = b̃i,j
1 (k)q−1 + . . . + b̃i,j

nB
(k)q−nB (36)

for i = 1, . . ., ny, j = 1, . . ., nu. The matrix A(q−1) of the linearised
model is the same as that of the rudimentary nonlinear model (8).
It is because for the currents sampling instant outputs of the model
(18) depend in a linear way on output signals at previous instants.
The mth output of the linearised Hammerstein model (m = 1, . . .,

ny) is then

ym(k) =
nu∑

n=1

nB∑
l=1

b̃m,n
l

(k)un(k − l) −
nA∑
l=1

am
l ym(k − l) (37)
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oefficients b̃m,n
l

(k) of the linearised model (37) depend on the
urrent operating point of the process.

Using the linearised model (37) recurrently, from the general
rediction Eq. (32) output predictions can be expressed as functions
f future control increments as proved in [28]:

ˆ(k) = G(k)�u(k)︸ ︷︷ ︸
future

+ y0(k)︸︷︷︸
past

(38)

here

ˆ(k) =

⎡
⎣ ŷ(k + 1|k)

...
ŷ(k + N|k)

⎤
⎦ , y0(k) =

⎡
⎣ y0(k + 1|k)

...
y0(k + N|k)

⎤
⎦ (39)

re vectors of length nyN. The free trajectory y0(k) depends only
n the past. It is calculated on-line from the neural Hammerstein
odel. (Linearisation and the free trajectory calculation is dis-

ussed in Section 3.3.2.) The dynamic matrix G(k) of dimensionality
yN × nuNu is calculated on-line taking into account the current
tate of the plant:

(k) =

⎡
⎢⎢⎣

S1(k) 0 . . . 0
S2(k) S1(k) . . . 0

...
...

. . .
...

SN(k) SN−1(k) . . . SN−Nu+1(k)

⎤
⎥⎥⎦ (40)

t contains step-response coefficients of the local linear approx-
mation of the nonlinear Hammerstein model. Step-response
ubmatrices are

j(k) =

⎡
⎢⎣

s1,1
j

(k) . . . s1,nu
j

(k)
...

. . .
...

sny,1
j

(k) . . . sny,nu
j

(k)

⎤
⎥⎦ (41)

or j = 1, . . ., N − Nu + 1. Step-response coefficients of the linearised
odel are determined recurrently for m = 1, . . ., ny, n = 1, . . ., nu,

= 1, . . ., N from

m,n
j

(k) =
min(j,nB)∑

i=1

b̃m,n
i

(k) −
min(j−1,nA)∑

i=1

am
i sm,n

j−i
(k) (42)

or prediction in (38) a linearised Hammerstein model is used.
hanks to it, the general MPC optimisation problem (5) becomes
he following quadratic programming task:

min
�u(k),εmin,εmax

{∣∣yref(k) − y0(k) − G(k)�u(k)
∣∣2

+
∣∣�u(k)

∣∣2

�
+ �min

∣∣εmin
∣∣2 + �max

∣∣εmax
∣∣2

}
subject to
umin ≤ J�u(k) + u(k − 1) ≤ umax

−�umax ≤ �u(k) ≤ �umax

ymin − εmin ≤ y0(k) + G(k)�u(k) ≤ ymax + εmax

εmin ≥ 0, εmax ≥ 0

(43)

here

ref(k) =

⎡
⎣ yss

assto(k)
...

yss
assto(k)

⎤
⎦ or yref(k) =

⎡
⎣ yss

lsso(k)
...

yss
lsso(k)

⎤
⎦ (44)
min =

⎡
⎣ ymin

...
ymin

⎤
⎦ , ymax =

⎡
⎣ ymax

...
ymax

⎤
⎦ (45)
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are vectors of length nyN:

umin =

⎡
⎣ umin

...
umin

⎤
⎦ , umax =

⎡
⎣ umax

...
umax

⎤
⎦ ,

�umax =

⎡
⎣�umax

...
�umax

⎤
⎦ , u(k − 1) =

⎡
⎣ u(k − 1)

...
u(k − 1)

⎤
⎦ (46)

are vectors of length nuNu, M = diag(M1, . . ., MN), � =
diag(�0, . . . , �Nu−1) are matrices of dimensionality nyN × nyN and
nuNu × nuNu, respectively, and

J =

⎡
⎢⎢⎣

Inu×nu 0nu×nu 0nu×nu . . . 0nu×nu

Inu×nu Inu×nu 0nu×nu . . . 0nu×nu

...
...

...
. . .

...
Inu×nu Inu×nu Inu×nu . . . Inu×nu

⎤
⎥⎥⎦ (47)

is the matrix of dimensionality nuNu × nuNu comprised of identity
and zeros submatrices of dimensionality nu × nu.

If hard output constraints are taken into account, the MPC opti-
misation task may be affected by the infeasibility problem (the
admissible set is be empty). To cope with such a situation, out-
put constraints have to be softened by slack variables [35,50]. A
quadratic penalty for constraint violations is used in the MPC-NPL
optimisation problem (43), εmin and εmax are vectors of length nyN
comprising slack variables and �min, �max > 0 are weights.

3.3.2. Linearisation, the free trajectory calculation
Coefficients of the linearised model (34) and (37) are calculated

from the neural Hammerstein model (18) as

b̃m,n
l

(k) = ∂ym(k)
∂un(k − l)

(48)

for all m = 1, . . ., ny, n = 1, . . ., nu, l = 1, . . ., nB. Derivatives (48) are
calculated analytically, the structure of the model is exploited.

Let vectors x̄m(k) ∈RnA+(nu+ne)nB (m = 1, . . ., ny) denote lineari-
sation points. They are comprised of past input, disturbance and
output signal values which are arguments of the Hammerstein
model of the mth output (17):

x̄m(k) = [ū1(k − 1) . . . ū1(k − nB) . . . ūnu (k − 1) . . . ūnu (k − nB)

ē1 (k − 1), . . . , ē1(k − nB), . . . , ēnu (k − 1), . . . , ēne (k − nB),

ȳm(k − 1) . . . ȳm(k − nA)]T (49)

Using (18) and (48), one has

b̃m,n
l

(k) =
nx∑

r=1

bm,r
l

Kr∑
i=1

w2,r
i

dϕ(zr
i
(x̄m(k)))

dzr
i
(x̄m(k))

w1,r
i,n

(50)

If hyperbolic tangent is used as the nonlinear transfer function ϕ in
the hidden layer of steady-state part of the model:

dϕ(zr
i
(x̄m(k)))

dzr
i
(x̄m(k))

= 1 − tanh2(zr
i (x̄m(k))) (51)

The nonlinear free trajectory y0
m(k + p|k) over the prediction hori-

zon, p = 1, . . ., N, m = 1, . . ., ny is calculated on-line recursively
from the general prediction Eq. (32) using the neural Hammerstein
model (18). Predictions are

nx∑Iuf(p)∑
m,r

⎡
2,r

Kr∑
2,r

⎛
1,r
ŷm(k + p|k) =

r=1 l=1

b
l

· ⎣w0 +
i=1

w
i

ϕ ⎝w
i,0
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ig. 5. Detailed configuration of the system structure with adaptive steady-state ta

+
nu∑
j=1

w1,r
i,j

uj(k − l+p|k)+
ne∑
j=1

w1,r
i,nu+j

ej(k − l + p|k)

⎞
⎠

⎤
⎦

+
nx∑

r=1

nB∑
l=Iuf(p)+1

bm,r
l

·

⎡
⎣w2,r

0 +
Kr∑
i=1

w2,r
i

ϕ

⎛
⎝w1,r

i,0

+
nu∑
j=1

w1,r
i,j

uj(k − l + p) +
ne∑
j=1

w1,r
i,nu+j

ej(k − l + p)

⎞
⎠

⎤
⎦

−
Iyp(p)∑
l=1

am
l ŷm(k − l + p|k) −

nA∑
l=Iyp(p)+1

am
l ym(k − l + p)

+dm(k) (52)

here Iuf(p) = min (p, nB), Iyp(p) = min (p − 1, nA). The free trajectory
s derived from (52) taking into account the fact that it depends
nly on the past, no changes in the control signal from the sampling
nstant k onwards are assumed, i.e. uj(k − l + p | k) should be replaced
y uj(k − 1) and future predictions ŷm(k + p | k) should be replaced
y values of the free trajectory y0

m(k + p|k). Because future values
f disturbances are usually not known in advance, ej(k − l + p | k)
hould be replaced by ej(k). Hence, the free trajectory is

0
m(k + p|k) =

nx∑
r=1

Iuf(p)∑
l=1

bm,r
l

·

⎡
⎣w2,r

0 +
Kr∑
i=1

w2,r
i

ϕ

⎛
⎝w1,r

i,0

+
nu∑
j=1

w1,r
i,j

uj(k − 1) +
ne∑
j=1

w1,r
i,nu+j

ej(k)

⎞
⎠

⎤
⎦

+
nx∑

r=1

nB∑
l=Iuf(p)+1

bm,r
l

·

⎡
⎣w2,r

0 +
Kr∑
i=1

w2,r
i

ϕ

⎛
⎝w1,r

i,0

+
nu∑
j=1

w1,r
i,j

uj(k − l + p) +
ne∑
j=1

w1,r
i,nu+j

ej(k − l + p)

⎞
⎠

⎤
⎦

−
Iyp(p)∑
l=1

am
l y0

m(k − l + p|k) −
nA∑

l=Iyp(p)+1

am
l ym(k − l + p)

+dm(k) (53)
ptimisation and the MPC-NPL algorithm based on the neural Hammerstein model.

Using (18) and (33), the unmeasured disturbance affecting the mth
output of the process is estimated from

dm(k) = ym(k) −
nx∑

r=1

nB∑
l=1

bm,r
l

·

⎡
⎣w2,r

0 +
Kr∑
i=1

w2,r
i

ϕ

⎛
⎝w1,r

i,0

+
nu∑
j=1

w1,r
i,j

uj(k − l) +
ne∑
j=1

w1,r
i,nu+j

ej(k − l)

⎞
⎠

⎤
⎦

+
nA∑
l=1

am
l ym(k − l) (54)

3.4. Summary of calculations

Detailed configuration of the discussed structure is shown in
Fig. 5. Only one neural Hammerstein model is used. From this non-
linear dynamic model the corresponding nonlinear steady-state
model is derived on-line. This model is used in the LSSO layer. A
linear approximation of the nonlinear steady-state model is also
calculated on-line and this linearisation is used in the ASSTO layer.
Next, from the dynamic neural Hammerstein model its lineari-
sation is calculated on-line and it is next used in the MPC-NPL
algorithm.

The presented structure is computationally efficient because
quadratic programming is used in the MPC-NPL algorithm and
linear programming is used in the ASSTO layer. The ASSTO layer
calculates the set-point as frequently as the MPC-NPL algorithm
is activated (at each sampling instant). The LSSO layer is activated
infrequently to verify the set-point calculated by the ASSTO layer.

All things considered, at each sampling instant k the following
steps are repeated:

1. Linearisation of the steady-state neural model: the matrix H(k)
(27) is calculated from (28)–(30).

2. The optimal set-point uss
assto(k) is calculated from the ASSTO opti-

misation problem (31). Next, the optimal set-point yss
assto(k) is

determined using the linearised model (25).
3. If the calculated set-point is verified, the set-point uss

lsso(k) is

also calculated from the LSSO nonlinear optimisation problem
(1). Next, the optimal set-point yss

lsso(k) is determined using the
nonlinear model (22).

4. Linearisation of the dynamic neural Hammerstein model: coeffi-
cients b̃m,n

l
, m = 1, . . ., ny, n = 1, . . ., nu, l = 1, . . ., nB are determined
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Fig. 6. The neutralisation reactor.

from (50) and (51) which comprise the step-response submatri-
ces Sj(k) (41) and the dynamic matrix G(k) (40).

. The nonlinear free trajectory y0(k) is calculated from (53) using
the neural Hammerstein model.

. The MPC-NPL quadratic programming problem (43) is solved. As
a result the optimal control policy �u(k) is determined. As the
set-point vectors yss

lsso(k) or yss
assto(k) calculated by LSSO or ASSTO

layers are used.
. The first nu elements of the calculated vector �u(k) are applied

to the process, i.e. u(k) = � u(k | k) + u(k − 1).
. The iteration number is increased, i.e. k : = k + 1, go to step 1.

. Simulation results

.1. Neutralisation reactor

The process under consideration is a multivariable pH neutrali-
ation process. The schematic diagram of the process is depicted in

ig. 6. In the tank acid (HNO3), base (NaOH) and buffer (NaHCO3)
re continuously mixed. Chemical reactions occurring in the system
re

2CO3 ↔ HCO−
3 + H+ (55)

ig. 7. Steady-state characteristics h(q1, q3) and pH(q1, q3) of the neutralisation process f
2 = 2 (right panels).
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HCO−
3 ↔ CO2−

3 + H+ (56)

H2O ↔ OH− + H+ (57)

The liquid level h in the tank and the value of pH of the outlet stream
q4 are controlled by manipulating acid and base flow rates q1 and
q3, respectively. It means that the process has two inputs (q1, q3)
and two outputs (h, pH). The buffer flow rate q2 is the measured
disturbance.

The fundamental dynamic model of the process is obtained
from component balance and equilibrium relationship under the
assumption of perfect mixing. The model consists of three nonlinear
ordinary differential equations [28,34,36]:

dWa4 (t)
dt

= q1(t)(Wa1 − Wa4 (t))
Ah(t)

+ q2(t)(Wa2 − Wa4 (t))
Ah(t)

+q3(t)(Wa3 − Wa4 (t))
Ah(t)

(58)

dWb4
(t)

dt
= q1(t)(Wb1

− Wb4
(t))

Ah(t)
+ q2(t)(Wb2

− Wb4
(t))

Ah(t)

+q3(t)(Wb3
− Wb4

(t))

Ah(t)
(59)

dh(t)
dt

= q1(t) + q2(t) + q3(t) − CV

√
h(t)

A
(60)

and an algebraic equation for the pH

Wa4 + 10pH(t)−14 − 10−pH(t) + Wb4
(t)

pH(t)−pK2
×
1 + 10pK1−pH(t) + 10pH(t)−pK2

= 0 (61)

where

pK1 = −log10Ka1 , pK2 = −log10Ka2 (62)

or different values of the disturbance: q2 = 0.1 (left panels), q2 = 0.55 (middle panels),
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Table 1
Parameters of the model and nominal operating conditions.

Wa1 = 0.003 M Wb3
= 0.00005 M q1 = 16.6 ml/s

Wa2 = −0.03 M Ka1 = 4.47 × 10−7 q2 = 0.55 ml/s
Wa3 = −0.00305 M Ka2 = 5.62 × 10−11 q3 = 15.6 ml/s

2

a

K

a
m
a
p
g

i
t
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i

t
q
p
p
w
v
d
a

b
e
c
e
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t
a
e
(
d
c
i
i

t
a
s
s
p
a
d
b
d
o
p
h
w
e
r
M
d
e

(

(

n =0n =0n =0
Wb1
= 0 M A = 207 cm h = 14.0090 cm

Wb2
= 0.03 M CV = 8.75 ml/cm s pH = 7.0255

nd

a1 = [HCO−
3 ][H+]

[H2CO3]
, Ka2 = [CO2−

3 ][H+]

[HCO−
3 ]

(63)

re equilibrium constants of reactions. The pH concentration is the
aximum real solution of the nonlinear Eq. (61). Quantities Wai

nd Wbi
(i = 1, 2, 3, 4) denote reaction invariants. Values of model

arameters and nominal operating conditions (q1, q2, q3, h, pH) are
iven in Table 1.

A simplified version of the neutralisation process (with one
nput and one output) is usually considered in the litera-
ure. The multivariable process is researched less frequently
22,24,28,34,36,42]. A noticeable exception is the reactor discussed
n [52] which has 3 inputs and 3 outputs.

The pH neutralisation process exhibits severe nonlinear proper-
ies. Steady-state characteristics of the reactor, h(q1, q3) and pH(q1,
3), are depicted in Fig. 7 for different values of the disturbance q2. In
articular, the relation pH(q1, q3) is nonlinear. Moreover, dynamic
roperties of the process are also nonlinear. As demonstrated else-
here, e.g. in [28], for positive and negative changes in manipulated

ariables (q1, q3) time-constants of obtained step-responses are
ifferent. Moreover, these time-constants also depend on the oper-
ting point.

Control of pH is of crucial importance in many chemical and
iochemical processes. Since the process is significantly nonlin-
ar, it cannot be adequately controlled by means of the classical PI
ontroller or simple MPC algorithms based on constant linear mod-
ls [36]. Hence, the neutralisation reactor is a standard benchmark
sed for comparing different model structures and nonlinear con-
rol strategies. In the literature applications of different approaches
re reported. In the simplest cases the PID controller whose param-
ters are updated on-line [7] or nonlinear internal model control
IMC) algorithm [19,51] can be used. A gain-scheduling controller is
iscussed in [40]. Alternatively, adaptive nonlinear control schemes
an be used [15,18]. A model reference adaptive control approach
s given in [24]. A multimodel robust controller is described
n [41].

More recently, different MPC algorithms have been used for
he neutralisation reactor. A fuzzy dynamic matrix control (DMC)
lgorithm is discussed in [36]. The algorithm uses a few local
tep responses, they are switched using a fuzzy approach. Local
tep responses are obtained easily from the real process, no com-
licated identification algorithms are necessary. Multiple model
daptive DMC control strategy is detailed in [8]. The MPC algorithm
escribed in [12] compensates for the nonlinearity of the process
ut it needs the inverse steady-state model. The MPC algorithm
iscussed in [28] calculates on-line the local linear approximation
f the nonlinear model, it is next used in a quadratic programming
roblem. In [25] a scheduling quasi-min-max MPC with an infinite
orizon (to guarantee stability) is used. In [42] an approach to MPC
hich uses partial-least-squares (PLS) based Hammerstein mod-

ls is presented. Input constraints are transformed into a nonlinear

egion in terms of the so called latent variables. Unfortunately, the
PC algorithm needs nonlinear optimisation. The MPC algorithm

iscussed in [52] also uses on-line nonlinear optimisation. An inter-
sting alternative to nonlinear MPC of the neutralisation reactor is
g Journal 166 (2011) 269–287

discussed in [2]. In place of the classical MPC algorithm based on
on-line nonlinear optimisation, a neural network approximator is
used which calculates on-line the MPC control policy.

Application of the classical multilayer control structure (with
the LSSO layer) to the considered multivariable neutralisation reac-
tor is described in [34]. Application of the integrated predictive
optimiser and constraint supervisor which provides the regulatory
layer with set-points calculated for both optimality and constraint
handling is reported in [48]. In both these approaches a linear model
is used in MPC which is sufficient because the region of operation is
very small. In this article a significantly bigger region is assumed. As
a result, the SSTO layer which cooperates with the MPC algorithm
based on a linear model gives numerically wrong results.

4.2. Neutralisation reactor modelling

Modelling reported in this article extends previous research
during which linear and Hammerstein models of the neutralisation
reactor were obtained [28], but assuming a constant disturbance
q2. For set-point optimisation such models are useless because the
optimal set-point depends on the current value of the disturbance.
Moreover, bearing in mind that from the dynamic Hammerstein
model its steady-state description is derived and next used for
set-point optimisation, not only dynamic but also steady-state
model accuracy is taken into account during model identification
described in this paper.

Three types of dynamic models of the process are considered:

a) the linear model with constant parameters:

y1(k) = b1,1
1 u1(k − 1) + b1,1

2 u1(k − 2) + b1,2
1 u2(k − 1)

+b1,2
2 u2(k − 2) + c1

1e(k − 1)

+c1
2e(k − 2) − a1

1y1(k − 1) − a1
2y1(k − 2) (64)

y2(k) = b2,1
1 u1(k − 1) + b2,1

2 u1(k − 2) + b2,2
1 u2(k − 1)

+b2,2
2 u2(k − 2) + c2

1e(k − 1) + c2
2e(k − 2)

−a2
1y2(k − 1) − a2

2y2(k − 2) (65)

where coefficients of the model are am
i

, bm,n
i

, cm
i

for all m, n, i = 1,
2,

b) the neural Hammerstein model which can be expressed as gen-
eral functions (17):

y1(k) = f1(u1(k − 1), u1(k − 2), u2(k − 1), u2(k − 2), e(k − 1),

e(k − 2), y1(k − 1), y1(k − 2)) (66)

y2(k) = f2(u1(k − 1), u1(k − 2), u2(k − 1), u2(k − 2), e(k − 1),

e(k − 2), y2(k − 1), y2(k − 2)) (67)

(c) the polynomial Hammerstein model with second-order
dynamic part (it can be also expressed as functions (66) and
(67)), as the steady-state part of the model two polynomials
are used:

x1(k) =
o1∑ o2∑ o3∑

˛1,n1,n2,n3 un1
1 (k)un2

2 (k)en3 (k) (68)
1 2 3

x2(k) =
o1∑

n1=0

o2∑
n2=0

o3∑
n3=0

˛2,n1,n2,n3 un1
1 (k)un2

2 (k)en3 (k) (69)
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Fig. 8. The dynamic training data set (top panels), the dynamic valida

where integers o1, o2 and o2 determine the order of polynomi-
als, ˛1,n1,n2,n3 and ˛2,n1,n2,n3 are coefficients.

Both classes of Hammerstein models have the same structure
epicted in Fig. 3. The only difference is the steady-state part, i.e. it

an be realised by neural networks or polynomials.

All three empirical models have the same input arguments
etermined by nm

A = nm,n
B = 2, m = 1, 2, n = 1, 2, in case of neural and

olynomial Hammerstein models nx = 2. Because input and out-
ut process variables have a different order of magnitude, they are
ata set (middle panels) and the dynamic test data set (bottom panels).

scaled:

u1= 1
15

(q1 − q1,nom), u2 = 1
15

(q3 − q3,nom), e=1
2

(q2 − q2,nom),
y1 = 1
35

(h − hnom), y2 = 1
4

(pH − pHnom) (70)

where q1,nom, q2,nom, q3,nom, hnom, pHnom correspond to the nominal
operating point given in Table 1.
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ig. 9. Outputs of the process (solid line) vs. outputs of the linear model (dashed lin
bottom panels).

The linear model is obtained in such a way that the following

ean squared error (MSE) performance function is minimised:

SE = 1
S

S∑
k=1

2∑
m=1

(ym(k|k − 1) − ym(k))2 (71)

able 2
roperties of neural and polynomial Hammerstein models in terms of the number of para

Model Parameters

Neural Hammerstein, K1 = K2 = 1 24
Neural Hammerstein, K1 = K2 = 2 34
Neural Hammerstein, K1 = K2 = 3 44
Neural Hammerstein, K1 = K2 = 4 54
Neural Hammerstein, K1 = K2 = 5 64
Neural Hammerstein, K1 = K2 = 6 74
Neural Hammerstein, K1 = K2 = 7 84
Neural Hammerstein, K1 = K2 = 8 94
Neural Hammerstein, K1 = K2 = 9 104
Neural Hammerstein, K1 = K2 = 10 114

Polynomial Hammerstein, 2th order 39
Polynomial Hammerstein, 3th order 76
Polynomial Hammerstein, 4th order 137
Polynomial Hammerstein, 5th order 228
Polynomial Hammerstein, 6th order 355
Polynomial Hammerstein, 7th order 524
Polynomial Hammerstein, 8th order 741
Polynomial Hammerstein, 9th order 1012
Polynomial Hammerstein, 10th order 1343
the dynamic training data set (top panels) and for the dynamic validation data set

where ym(k | k − 1) (m = 1, . . ., ny = 1, 2) denote outputs of the model

for the sampling instant k calculated using signals up to the sam-
pling instant k − 1, ym(k) are targets, i.e. recorded real values of
process output variables, S is the number of samples. Because the
MSE function (71) is quadratic, the linear model can be easily cal-
culated using the least-squares method.

meters and the MSE performance index.

MSEtraining MSEvalidation MSEtest

9.4391 × 10−2 1.1603 × 10−1 –
3.0922 × 10−2 3.1471 × 10−2 –
2.6041 × 10−2 2.5673 × 10−2 –
2.3771 × 10−2 2.3204 × 10−2 –
2.3288 × 10−2 2.1752 × 10−2 2.5830 × 10−2

2.3170 × 10−2 2.1514 × 10−2 –
2.2671 × 10−2 2.1385 × 10−2 –
2.2534 × 10−2 2.1360 × 10−2 –
2.2463 × 10−2 2.1275 × 10−2 –
2.2187 × 10−2 2.0502 × 10−2 –

5.2803 × 10−2 5.3057 × 10−2 –
3.8156 × 10−2 3.8061 × 10−2 –
3.2508 × 10−2 3.1623 × 10−2 –
2.9626 × 10−2 2.8917 × 10−2 –
2.7415 × 10−2 2.6584 × 10−2 –
2.5575 × 10−2 2.5296 × 10−2 –
2.4695 × 10−2 2.4077 × 10−2 –
2.4381 × 10−2 2.3585 × 10−2 –
2.4203 × 10−2 2.3418 × 10−2 –
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ig. 10. Outputs of the process (solid line) vs. outputs of the chosen neural Hamme
alidation data set (middle panels) and for the dynamic test data set (bottom panels)

The dynamic Hammerstein model is used in MPC. In addition
o that, from this model its steady-state description is derived and
sed for set-point optimisation in LSSO and ASSTO layers. It means
hat the model must be precise in two respects: it must mimic the

ynamic behaviour of the process and reflect its steady-state prop-
rties. Hence, in contrast to classical identification algorithms used
or Hammerstein models [20], in this study nonlinear neural and
olynomial Hammerstein models are obtained in such a way that
model (dashed line) for the dynamic training data set (top panels), for the dynamic

the following MSE performance function is minimised:

MSE = 1
S

S∑
k=1

2∑
m=1

(ym(k|k − 1) − ym(k))2
+ �
1

Sss

Sss∑
s=1

2∑
m=1

(yss
mod,m(s) − yss

m(s))2 (72)
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ig. 11. The steady-state characteristics pH(q1, q3) for q2 = 0.55 obtained from poly

he first part of the above performance function is exactly the same
s in the case of the linear model (71), it describes accuracy of the
ynamic behaviour of the model. The second part of the MSE func-
ion describes accuracy of the steady-state model derived from the
ynamic one. Quantities yss

mod,m(s) denote outputs of the nonlin-
ar steady-state model (22), yss

m(s) are steady-state targets, Sss is
he number of steady-state samples. The coefficient � determines
he relation of two parts of the MSE function. Its value is adjusted
y trial and error to obtain models which have good dynamic and
teady-state accuracy. During calculations � = 0.1.

The fundamental model of the neutralisation reactor (58)–(61)
s used as the real process. The system of differential equations
58)–(60) is solved using the Runge–Kutta 45 method. The fun-
amental model is simulated open-loop in order to obtain three
ets of dynamic data, namely training, validation and test data sets
epicted in Fig. 8. The domain of interest is: q1 = 10, . . ., 30 ml/s,
2 = 0.1, . . ., 2 ml/s, q3 = 10, . . ., 30 ml/s. Training and test data
ets contain 3000 samples, the validation data set contains 1000
amples. The sampling time is 10 s. Output signals contain small
easurement noise.
Analogously, steady-state training, validation and test data sets

re also obtained from the steady-state fundamental model derived
rom the dynamic fundamental model (58)–(61). These data sets

re generated randomly in such a way that the whole domain of
nterest is covered. Training and test sets have 8000 samples, the
alidation set has 2500 samples.

Three dynamic and three steady-state data sets are used. Train-
ng data sets are used only for model training, i.e. the MSE
l Hammerstein models of order 5, 7, 10 and from the neural Hammerstein model.

performance function (72) is minimised on these sets. As a result,
parameters of the model are calculated. Because models should
have good generalisation properties, the value of the MSE index for
validation sets is monitored during training. When the validation
error increases, training is terminated to avoid overfitting. Model
selection is performed taking into account the value of MSE only for
validation data sets. Test data sets are used to assess generalisation
abilities of the chosen model.

The MSE performance index (72) is minimised using the quasi-
Newton Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [3]
optimisation method. Since training of Hammerstein models is in
fact an unconstrained nonlinear minimisation problem, training is
repeated 10 times for each model configuration, model parameters
are initialised randomly.

At first, the linear model (64), (65) is calculated. Because the
process is nonlinear, accuracy of the linear model is very low.
Outputs of the process and outputs of the linear model for train-
ing and validation data sets (dynamic data) are compared in
Fig. 9. Because the steady-state relation pH(q1, q2, q3) is signif-
icantly nonlinear as shown in Fig. 7, the linear dynamic model
of pH is also very inaccurate. Obtained values of the perfor-
mance function (71) are: MSEtraining = 4.3056 × 10−2, MSEvalidation
= 4.9998 × 10−2.
The steady-state part of the neural Hammerstein model has two
separate networks (nx = 2) which have K1 and K2 hidden nodes,
respectively. The hyperbolic tangent transfer function is used as
the function ϕ in hidden layers. Models with K1 = K2 = 1, . . ., 10 hid-
den nodes are considered. In the steady-state part of the polynomial
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Using scaling (70):

JE = 15(c1 − c4)uss
1 + 15(c3 − c4)uss

2
+(c1 − c4)q1,nom + (c3 − c4)q3,nom − c4qss

2
(75)
M. Ławryńczuk / Chemical Engi

ammerstein model polynomials of order o1 = o2 = o3 = 2, . . ., 10 are
sed.

Table 2 shows properties of compared neural and polynomial
ammerstein models in terms of the number of parameters and the
SE performance index (72). In general, neural models turn out to

e more precise and have a significantly smaller number of param-
ters. Such an observation is even more evident than in the case of
olynomial Hammerstein models which do not take into account
he disturbance q2 [28]. It is because now the steady-state part of
he model, given by (68) and (69), has 3 inputs. For example, the
eural model with K1 = K2 = 3 hidden nodes (44 parameters) gives
he value of the MSEvalidation index comparable with that obtained
y the polynomial model of the 7th order (524 parameters). More
omplex neural models (i.e. with K1 = K2 > 3) are characterised by
ven smaller MSEvalidation values. Hence, considering two compared
lasses of Hammerstein models, the neural Hammerstein structure
s a straightforward choice.

The neural Hammerstein model next used for on-line set-point
ptimisation and MPC should be both precise and have a limited
umber of parameters. The model is chosen on the basis of the MSE

ndex for validation data sets. As a reasonable compromise between
ccuracy and complexity the model with K1 = K2 = 5 hidden nodes
s finally chosen. Although increasing the number of hidden nodes
eads to reducing the MSEvalidation index, but this reduction is not
ignificant. The chosen model has only 64 parameters (counting
eights of the neural steady-state part and parameters of the lin-

ar dynamic part). It is necessary to point out that all polynomial
ammerstein models are less precise.

Finally, for the chosen neural Hammerstein model the MSE
ndex for test data sets is calculated, (MSEtest = 2.5830 × 10−2).
ince these sets are used neither for training nor for model selec-
ion, the error on test sets gives an unbiased estimate of the
eneralisation error. Outputs of the process and outputs of the
hosen neural Hammerstein model for training, validation and
est data sets (dynamic data) are depicted in Fig. 10. For better
omparison, the same axes as in the case of the linear model are
sed (Fig. 9).

From the dynamic Hammerstein model its steady-state descrip-
ion is derived on-line and next used for set-point optimisation.
xample steady-state characteristics pH(q1, q3) for q2 = 0.55
btained from polynomial and neural Hammerstein models are
epicted in Fig. 11. Polynomials of order 5, 7 and 10 are used, which
eans that polynomial Hammerstein models have as many as 228,

24 and 1343 parameters, respectively, whereas the chosen neu-
al model has only 64 parameters. The steady-state characteristics
btained from the Hammerstein model in which polynomials of
he 5th order are used is not precise. It is not flat when neces-
ary, in the central part it is not characteristically curved. Of course,
y increasing the polynomial order it is possible to improve the
hape of the steady-state characteristics of models, but some inac-
uracies are still present and such models have a huge number of
arameters.

.3. On-line set-point optimisation and MPC of the neutralisation
eactor

To demonstrate accuracy and computational efficiency of the
iscussed approach, three system structures are compared:

. The ideal classical multilayer structure with nonlinear set-point

optimisation (the LSSO layer) activated at each sampling instant
and the MPC-NO algorithm with full nonlinear optimisation.

. The discussed structure with the ASSTO layer and the MPC-NPL
algorithm, the LSSO layer is activated for verification 100 times
less frequently than the MPC-NPL algorithm.
g Journal 166 (2011) 269–287 283

3. The classical multilayer structure with the LSSO layer activated
100 times less frequently than the linear MPC algorithm. The
steady-state target optimisation (SSTO) layer recalculates the
set-point at as frequently as MPC is activated [21,44,49,50].

In the first case at each sampling instant two nonlinear optimisa-
tion problems are solved on-line. This structure is computationally
demanding, it is treated as the reference. In the second case the
LSSO layer is activated infrequently, but the set-point is calculated
at each sampling instant by the ASSTO layer which needs linear pro-
gramming. In the second structure the MPC-NPL algorithms is used,
it leads to quadratic programming. In both structures the same neu-
ral Hammerstein model (66), (67) with K1 = K2 = 5 hidden nodes is
used, i.e. the full model is used for prediction in MPC, a steady-
state model derived from the dynamic one is used for set-point
optimisation (LSSO and ASSTO layers).

In the third structure the constant linear model (64), (65) is
used for prediction in MPC. The LSSO layer is activated infrequently,
it uses a neural steady-state model. The set-point is calculated at
each sampling instant by the SSTO layer. This layer uses the linear
steady-state model derived from the dynamic one and for calcu-
lations linear programming is used. In contrast to the first two
structures, in which all models correspond to the rudimentary neu-
ral Hammerstein one, in the third structure different models are
used in LSSO and SSTO layers.

The fundamental model (58)–(61) is used as the real process.
Differential equations (58)–(60) are solved using the Runge–Kutta
45 method. All algorithms are implemented in Matlab. For nonlin-
ear optimisation the sequential quadratic programming (SQP) [3]
algorithm is used.

In order to maximise production, for set-point optimisation the
objective function is

JE = c1qss
1 + c3qss

3 − c4qss
4 (73)

Because in steady-state qss
4 = qss

1 + qss
2 + qss

3 :

JE = (c1 − c4)qss
1 − c4qss

2 + (c3 − c4)qss
3 (74)
Fig. 12. The disturbance scenario.
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ig. 13. Simulation results: the ideal classical structure with nonlinear set-point o
ith the ASSTO layer and the MPC-NPL algorithm (dashed line with circles). In both s

nlarged fragment of the output trajectory.

nd taking into account only decision variables of the set-point
ptimisation, one obtains:

E = 15(c1 − c4)uss
1 + 15(c3 − c4)uss

2 (76)

ss
[

ss ss
]T
n comparison with (1), u = u1 u2 , economic prices are cu =
15(c1 − c4) 15(c3 − c4)]T, cy = [0 0]T. During simulations c1 = 1,
3 = 2, c4 = 5 [34].

The same constraints imposed on manipulated and controlled
ariables are used in set-point optimisation and MPC. Constraints
sation and the MPC-NO algorithm (solid line with dots) vs. the discussed structure
res the same same neural Hammerstein model is used. The bottom panel shows an

of manipulated variables are

10 ml/s ≤ q1, qss
1 ≤ 30 ml/s, 10 ml/s ≤ q3,

qss
3 ≤ 30 ml/s (77)
whereas constraints of controlled variables are

35 cm ≤ h, hss ≤ 40 cm, 5 ≤ pH, pHss ≤ 6 (78)
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Fig. 14. Simulation results: the classical multilayer str

The disturbance scenario is

2(k) =
{

q2,nom k < 150
q2,nom + 0.45(sin(˛(k − 150))) ml/s 150 ≤ k ≤ 700

(79)
here ˛ = 2�/(700 − 150 + 1), i.e. the disturbance changes sinu-
oidally from the sampling instant k = 150, its amplitude is 0.45.
he disturbance signal is shown in Fig. 12.

Parameters of MPC are: N = 10, Nu = 2, Mp = diag(1, 1),
p = diag(1, 1), analogously as in [28].
with the SSTO layer and MPC based on linear models.

Fig. 13 depicts simulation results obtained in the ideal classical
structure with nonlinear set-point optimisation and the MPC-NO
algorithm and in the discussed structure with the ASSTO layer and
the MPC-NPL algorithm. In both structures the same neural Ham-
merstein model is used. The following trajectories are depicted:
(a) optimal output trajectories hss, pHss calculated from the set-
point optimisation problem and

(b) actual (dynamic) input trajectories q1, q3 and actual output tra-
jectories h, pH.
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At the beginning of simulations the LSSO layer calculates the
ptimal set-point (hss = 40 cm, pHss = 5.7387). Because the process
s started using nominal conditions (Table 1), MPC algorithms need
ome time to steer the process to the desired set-point. In the dis-
ussed structure the LSSO layer is also activated for k = 150, 250,
50, 450, 550, 650, in all remaining iterations the set-point is cal-
ulated using the ASSTO layer.

It is evident that all trajectories (set-points hss, pHss, inputs q1,
3 and outputs h, pH) obtained in the described structure are very
lose to those obtained in the ideal but unrealistic case when non-
inear set-point optimisation and nonlinear MPC optimisation are
epeated at each sampling instant on-line.

The bottom panel in Fig. 13 shows an enlarged fragment of the
utput pH trajectory. This particular fragment is chosen because
ifferences between two compared structures are the biggest when
he set-point is changed from pH = 5 to pH = 6. For the whole simu-
ation horizon (700 sampling instants) the economic performance
ndex:

E =
700∑
k=1

JE(k) =
700∑
k=1

(c1q1(k) + c3q3(k) − c4q4(k)) (80)

s calculated after simulations. Obtained values are very simi-
ar, in the first structure JE = − 13423.30, in the second structure
E = − 13422.58 (the bigger the negative value the better).

Because trajectories and economic results obtained in both
tructures are similar, it is interesting to compare their compu-
ational complexity. The computational cost (in terms of floating
oint operations) of both structures is assessed. Next, the compu-
ational complexity reduction factor is calculated from

= computational cost of structure 1
computational cost of structure 2

(81)

he factor F shows how many times the discussed structure is less
omputationally demanding in comparison with the first, ideal one.
ecause overall computational complexity is strongly influenced by
he control horizon, for Nu = 2: F = 5.40, for Nu = 5: F = 13.15 and for
u = 10: F = 30.93.

Finally, the classical multilayer structure with the LSSO layer
ctivated 100 times less frequently than the linear MPC algorithm
nd the SSTO layer which recalculates the set-point at as frequently
s MPC is activated is verified. In MPC a linear dynamic model is
sed, in the SSTO layer its steady-state version is used. Simulation
esults are depicted in Fig. 14. Because the process is significantly
onlinear and the linear model is very inaccurate as shown in Fig. 9,
hen it is used for MPC and set-point optimisation, one obtains
umerically wrong results. System trajectories are completely dif-

erent from those obtained in the ideal multilayer structure and in
he discussed structure (Fig. 13).

. Conclusions

Properties of the considered neutralisation reactor are signifi-
antly nonlinear. In consequence, the classical system structure in
hich for control and set-point optimisation linear models are used

ives numerically wrong results. In the computationally efficient
ystem structure described in this paper the neural Hammerstein
odel of the process is used for both set-point optimisation and
PC. For the ASSTO layer, a linearisation of the steady-state model

erived from the Hammerstein one is calculated on-line. Thanks
o it, the set-point is determined from an easy to solve linear pro-

ramming problem. The MPC-NPL algorithm is used for control in
hich a linear approximation of the Hammerstein model is calcu-

ated on-line. Thanks to it, the control policy is determined from a
uadratic programming problem. Linearisation makes it possible to
liminate the necessity of repeating on-line nonlinear optimisation

[

[
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at each sampling instant. It is demonstrated that results obtained
in the discussed structure are very close to those obtained when
for set-point optimisation and MPC nonlinear optimisation is used
on-line.

In contrast to the rudimentary structure with the ASSTO layer
[49,50] in which two separate models are used (steady-state
and dynamic), in the described system structure only one neu-
ral Hammerstein model is used. Thanks to the fact that such a
model has a specific structure, its steady-state description can be
derived in a straightforward manner. It is not possible for a gen-
eral nonlinear black-box model, e.g. a neural one. Moreover, the
model has a regular structure and a limited number of parame-
ters. As a result, linearisation, unmeasured disturbance estimation
and free trajectory calculation can be carried out very efficiently
on-line.

It is shown in this paper that for the considered neutralisation
reactor the neural Hammerstein structure is significantly better
than the polynomial Hammerstein one in terms of accuracy and
the number of parameters. The reactor is a multivariable process,
the polynomial steady-state part of the model needs a big number
of parameters as shown in Table 2. Because neural networks are
universal approximators, they can be much more efficiently used
as the steady-state part of the model. Results reported in this paper
confirm the general statement given in [20]. Moreover, because
the steady-state model is derived from the dynamic Hammerstein
one, it is necessary to point out that models obtained from neural
Hammerstein systems are precise whereas models derived from
polynomial Hammerstein systems have some significant inaccura-
cies as shown in Fig. 11.

On the one hand, all above observations have been made for
the particular neutralisation reactor. On the other hand, they are
quite general because there are numerous multivariable processes
in chemical engineering whose properties are nonlinear. It is obvi-
ous that for such processes set-point optimisation and predictive
control based on linear models are likely to give poor results. Hence,
the efficient multilayer system structure based on neural Hammer-
stein models is a viable alternative.
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